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FreedomCAR Goals for 2015 Require Technology 

Breakthroughs and High Production Volumes 
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Project Objectives:

 Develop high performance permanent magnets (PM) for 

traction motor with internal PM rotor :

 requires elevated temperature (180-200˚C) operation, minimize cooling 

needs

 increased high temperature magnetic performance more critical than 

RT

 Reduce manufacturing cost of PM traction motors:

 bonded PM can utilize injection or compression molding technology

 net shape forming for mass production of rotors

 Achieve high performance and reliability for bonded magnets:

 increase volumetric loading

 minimize irreversible magnetic losses (oxidation) 
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Sintered vs. Bonded (RSP) 

RE-Fe-B (2-14-1) Permanent Magnets

Sintered

Cast/homogenized/crushed/pressed/sintered

Anisotropic (Aligned)

crystallographic

magnetic

Plus:

-high energy product

Minus:

-magnetize each part

-difficult assembly of segments

-corrosion (plate each part)

Bonded

RSP:  Melt spun (flake), Atomized (spherical)

Crystallization annealed/compounded/formed

Isotropic (Microcrystalline)

Plus:

-net shape molding (full assemblies)

-magnetize assembly (multi-sector)

-corrosion resistance (encapsulated)

Minus:

-reduced energy product
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Tom Jahns, U of Wisc
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Tom Jahns, U of Wisc
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Tom Jahns, U of Wisc
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Melt Spinning Technique
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Gas Atomization of Spherical 

Powder 
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Nd2Fe14B

 Plus

 Nd 

 relatively abundant RE

 large magnetic moment

 low vapor pressure

 reactivity not bad

 High saturation 

magnetization

 Minus

 low Curie temperature

 large temperature 

dependence of the 

magnetocrystalline 

anisotropy

 peritectic compound

 difficult to form pure 

compound 

 In equilibrium with a low 

melting liquid

Alloy Design
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 Given the qualities

 Magnetic

 Tc, Br, , Hci, BHmax

 Physical

 Ductility, toughness, hardness

 Financial

 Cost, ease of assembly

 The sum is essentially constant

Pseudo-conservation of mediocrity
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 Magnetic moment of the hard phase

 Nd2Fe14B  

 Nd=3.3 B/atom, Fe~2 B/atom

 Ferromagnetic coupling

 ~35 B/formula unit

 Dy2Fe14B  

 Dy=10 B/atom, Fe~2 B/atom

 Antiferromagnetic coupling

 ~8 B/formula unit

 Degree of orientation of the hard phase

 Volume percent of the hard phase

What are the factors that determine Br?
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Alloy SUMMARY

 YDy-based [Ndx(YDy)0.5(1-x)]2.2Fe14-yCoyB

 compensate the loss of Ms and Hcj due to

heating

simultaneously yield smaller temperature

coefficient of Br and Hcj.

The desired properties and thermal stability can be

optimized by a judicious mixture of Nd-Y-Dy.

The YDy-based R2Fe14B magnets are very promising

for high temperature performance.
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WT-096 Ames Alloy Composition Converted 

into 100 kg of Particulate (MQP-11HTP) by 

Magnequench International
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Estimated Magnet properties
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